Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
J Transl Med ; 22(1): 370, 2024 Apr 18.
Article in English | MEDLINE | ID: mdl-38637842

ABSTRACT

JAK-STAT signalling pathway inhibitors have emerged as promising therapeutic agents for the treatment of hair loss. Among different JAK isoforms, JAK3 has become an ideal target for drug discovery because it only regulates a narrow spectrum of γc cytokines. Here, we report the discovery of MJ04, a novel and highly selective 3-pyrimidinylazaindole based JAK3 inhibitor, as a potential hair growth promoter with an IC50 of 2.03 nM. During in vivo efficacy assays, topical application of MJ04 on DHT-challenged AGA and athymic nude mice resulted in early onset of hair regrowth. Furthermore, MJ04 significantly promoted the growth of human hair follicles under ex-vivo conditions. MJ04 exhibited a reasonably good pharmacokinetic profile and demonstrated a favourable safety profile under in vivo and in vitro conditions. Taken together, we report MJ04 as a highly potent and selective JAK3 inhibitor that exhibits overall properties suitable for topical drug development and advancement to human clinical trials.


Subject(s)
Drug Development , Hair , Mice , Animals , Humans , Mice, Nude , Drug Discovery , Janus Kinase 3
2.
Eur J Med Chem ; 258: 115533, 2023 Oct 05.
Article in English | MEDLINE | ID: mdl-37302342

ABSTRACT

The chromone alkaloid is one of the classical pharmacophores for cyclin-dependent kinases (CDKs) and represents the first CDK inhibitor to reach clinical trials. Rohitukine (1), a chromone alkaloid isolated from Dysoxylum binectariferum inspired the discovery of several clinical candidates. The N-oxide derivative of rohitukine occurs naturally, with no reports on its biological activity. Herein, we report isolation, biological evaluation, and synthetic modification of rohitukine N-oxide for CDK9/T1 inhibition and antiproliferative activity in cancer cells. Rohitukine N-oxide (2) inhibits CDK9/T1 (IC50 7.6 µM) and shows antiproliferative activity in the colon and pancreatic cancer cells. The chloro-substituted styryl derivatives, 2b, and 2l, inhibit CDK9/T1 with IC50 values of 0.17 and 0.15 µM, respectively. These derivatives display cellular antiproliferative activity in HCT 116 (colon) and MIA PaCa-2 (pancreatic) cancer cells with GI50 values of 2.5-9.7 µM with excellent selectivity over HEK293 (embryonic kidney) cells. Both analogs induce cell death in MIA PaCa-2 cells via inducing intracellular ROS production, reducing mitochondrial membrane potential, and inducing apoptosis. These analogs are metabolically stable in liver microsomes and have a decent oral pharmacokinetics in BALB/c mice. The molecular modeling studies indicated their strong binding at the ATP-binding site of CDK7/H and CDK9/T1.


Subject(s)
Alkaloids , Antineoplastic Agents , Pancreatic Neoplasms , Mice , Animals , Humans , HEK293 Cells , Chromones/chemistry , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Cyclin-Dependent Kinases , Alkaloids/chemistry , Pancreatic Neoplasms/drug therapy , Cyclin-Dependent Kinase 9
3.
J Cell Sci ; 135(13)2022 07 01.
Article in English | MEDLINE | ID: mdl-35686490

ABSTRACT

IGF1R is pursued as a therapeutic target because of its abnormal expression in various cancers. Recently, we reported the presence of a putative allosteric inhibitor binding pocket in IGF1R that could be exploited for developing novel anti-cancer agents. In this study, we examined the role of nine highly conserved residues surrounding this binding pocket, with the aim of screening compound libraries in order to develop small-molecule allosteric inhibitors of IGF1R. We generated GFP fusion constructs of these mutants to analyze their impact on subcellular localization, kinase activity and downstream signaling of IGF1R. K1055H and E1056G were seen to completely abrogate the kinase activity of IGF1R, whereas R1064K and L1065A were seen to significantly reduce IGF1R kinase activity. During molecular dynamics analysis, various structural and conformational changes were observed in different conserved regions of mutant proteins, particularly in the activation loop, compromising the kinase activity of IGF1R. These results show that a stretch of four discontinuous residues within this newly identified binding pocket is critical for the kinase activity and structural integrity of IGF1R. This article has an associated First Person interview with the first author of the paper.


Subject(s)
Amino Acids , Receptor, IGF Type 1 , Amino Acids/metabolism , Cell Line, Tumor , Humans , Phosphorylation , Proto-Oncogene Proteins c-akt/metabolism , Receptor, IGF Type 1/genetics , Receptor, IGF Type 1/metabolism , Signal Transduction
SELECTION OF CITATIONS
SEARCH DETAIL
...